Що треба знати перш ніж відбудовувати зруйновані міста

З циклу ВУММ “Наука під обстрілами”

Олександр Бурлака, інженер-будівельник, кандидат технічних наук

Плани відбудови українських міст мають починатися з оцінювання стану кожної окремої будівлі. Цим мають займатися не тільки архітектори, але і спеціалісти із розрахунку конструкцій, їхнього монтажу та міцності матеріалів. Сучасна будівельна наука може впоратися із майже будь-якою проблемою, але часто рішення потребує знань, грошей та часу.

Харків — місто, яке доведеться довго відновлювати після російських бомбардувань

Галицький національний природний парк

ВУММ мандрує

В евакуації ВуММ відвідав Галицький національний природний парк і познайомився з тамтешніми науковцями. Автор тексту та фотографій Василь Маланюк, кандидат біологічних наук, начальник наукового відділу.

Галицький національний природний парк створено 9 серпня 2004 року з метою збереження, відтворення та раціонального використання природних комплексів та об’єктів Передкарпаття й Опілля, що наділені особливими природоохоронними, науковими, історико-культурними, оздоровчими, освітніми та естетичними цінностями.

Парк розташований в межах Галицького району Івано-Франківської області. Знаходиться на межі двох фізико-географічних країн: Українських Карпат (область Передкарпаття) та Східно-Європейської рівнини (Розтоцько-Опільська горбогірна область Західно-Української лісостепової провінції Лісостепової зони). Природною межею між ними з північного заходу на південний схід є ріка Дністер, яка з своїми притоками є важливим елементом природного середовища, що суттєво впливає на біологічне та ландшафтне різноманіття, рекреаційний і природно-заповідний потенціал, екологічну ситуацію регіону. Загальна площа парку становить 14684,8 га, у тому числі 12159,3 га надано у постійне користування. Особливість територіальної структури парку проявляється у його кластерному характері – існуванні окремих лісових масивів, ділянок лучно-степової та петрофільної рослинності, штучних та природних водойм. У складі ГНПП функціонують Галицьке, Бурштинське, Блюдниківське та Крилоське лісництва.

Зоопарки України в умовах війни

З циклу ВУММ “Наука під обстрілами”

Євген Олександрович Кіося, провідний методист культурно-просвітницького відділу Харківського зоопарку, старший викладач біологічного факультету Харківського національного університету імені В. Н. Каразіна.

З початком масового вторгнення армії росії в лютому 2022 року в скрутному становищі в Україні опинилися не тільки люди та їхні домашні улюбленці, але й тварини, що утримуються в установах, які люди називають узагальнюючим словом “зоопарки”.

Continue reading Зоопарки України в умовах війни

Фізика та життя

Фізика та світло

Нове тисячоліття розпоча­лося з широкого представлення найменшого, найшвидшого, найекономічні­шого джерела світла, яке людство коли-небудь створювало, – LED (LightEmittingDiode). Ця технологія стала можливою завдяки напівпровідникам – матері­алам, які до того зробили прорив у електроніці. Після свічок, лампочок розжарю­вання та люмінесцентного освітлення, LED – четверта ілюмінаційна технологія. Вона дозволяє створювати світло використовуючи дуже мало енергії у порівнянні з традиційними джерелами світла.

Як LED працює? LED – ніби маленькі лампочки, що легко встановити в електричне коло. Вони не виробляють світло нагріванням нитки, тому вони не стають гарячими. Натомість, світло виробляється рухом елект­ронів у напівпровіднику, як у стандартних транзисторах. Згідно з квантовою теорією, коли електрони переходять на нижчий енергетичний рівень, вивільнюється енергія у вигляді світлових часток – фотонів. LED мають безліч переваг, тому лише за десятиліття захопили світ. Що очікувати далі? Можливо, бездротову світлову революцію!

Матеріал виходить за підтримки EPS Kharkiv Young Minds Section

Автор фото: DzygaLab

Фізика та життя

Фізика та ідентифікація

Технологія RFID (Radio frequency identification) ви­користовує радіохвилі для ідентифікації і відстеження мітки, що прикріплена до об’єкту (від автомобілів до домашніх тварин). Зручно, що для радіохвиль не обов’язково, щоб мітка була у прямому полі зору зчитувача – вона буде зчитана просто коли знаходиться поруч. Мітка може бути дуже маленькою, тому її можна розмістити у будь-чому, як наприклад, банківських картках. До того ж, у більшості таких систем, картка не потребує бата­рейки чи іншого джерела струму. Необхідний елект­ричний струм буде індукованим радіохвилями з передавача (згадай закон електромагнітної індукції). Індукованого струму доста­тньо, щоб виконати просте обчислення на RFID-чіпі чи спілкуватись з передавачем. В залежності від типу чіпа та частоті хвилі, RFID системи можуть працювати від 10 см до 10 м. Звісно, ці можливості потребують заходів безпеки для запобігання зловживання особистою інформацією.

RFID – гарний приклад технології, яка з’явилась з фундаментальних дослі­джень і зробила наше життя трохи легшим.

Матеріал виходить за підтримки EPS Kharkiv Young Minds Section

Джерело фото: Photo

Фізика та життя

Фізика та смартфон

Твій смартфон, який скоріш за все зараз у твоїй кишені, – це одна з найдивовижніших мінілабораторій в історії. Існування цього складного об’єкту, що був вперше комерціалізований у 2007 році, завдячує десятиліттям наукових досліджень, які часто були відзначені Нобелівськими преміями. Наприклад, сучасний розвиток рідких кристалів та їх застосування у LCD дисплеях був би неможливим без робіт П’єра-Жилье де Жена (Нобелівська премія, 1991). Проривом для сучасних камер було створення напівпровідних CCD (Charge-coupled device) світлових сенсорів Віллардом Бойле і Джорджом Е́лвудом Смітом (Нобелівська премія, 2009). Точне місцезнаходження твого смартфону можливе завдяки GPS (Global positioning system), яка потре­бує точного виміру часу по атомному годиннику і позиції спеціалізованих супутників. Окрім іншого, смартфон був би неможливим без напівпровідних мікропроце­сорів, пам’яті високої щіль­ності, бездротових техно­логій, тощо.

Смартфон – результат спі­льної плідної роботи фундаментальної науки, інженерів та промислових розробників.

Матеріал виходить за підтримки EPS Kharkiv Young Minds Section

Джерело фото: Photo Mix з сайту Pixabay

Фізика та життя

Фізика та спілкування

Кожного разу коли ти відправляєш e-mail чи шукаєш щось в Інтернет, скоріш за все для передачі цифрової інформації використовується оптичневолокно. Причини через які оптичне волокно має переваги перед мідними кабелями: більша ємність, менші втрати на відстані, менша чутливість до завад. Такі волокна зроблені зі скла товщиною з людський волос, що оточений матеріалом, який не дозволяє світлу покинути волокно (згадай повне внутрішнє відбиття). Пасмо таких волокон зв’язують разом щоб сформувати кабелі, які легко зігнути. Цифрові данні передаються через такі волокна імпульсами, які створені світло діодами (LED – Light-emitting diode) або невеликими лазерами (LASER – Light amplification by stimulated emission of radiation).

Таким чином, це ще один з безлічі прикладів викорис­тання лазерів у сучасному житті. Після його створення науковцями у 1950тих, ка­зали що, лазер – це «рішення, що шукає задач», бо саме з його появою з’явилась лазерна хірургія, лазерний друк, сканування кодів, лазерне зварювання, тощо.

Матеріал виходить за підтримки EPS Kharkiv Young Minds Section

Джерело фото

Фізика та життя

Фізика та МРТ

Магні́тно-резона́нсна то­могра́фія (МРТ) – це безконтактна технологія, яка створює зображення нашого внутрішнього «світу» з надзвичайною точністю. Вона використовує той факт, що ядра простих атомів як гідроген, якого у нас безліч в організмі, ведуть себе як маленькі магніти що обертаються. Коли ввімкнути магнітне поле, атом гідрогену буде орієнтований паралельно до ліній магнітного поля. Додаючи радіохвилю з правильною частотою, орієнтацію атомів можна повернути. Коли радіосигнал вимикають, атоми повертаються до початкової орієнтації, випромінюючи сигнал у радіоспектрі. Що цікаво, цей сигнал залежить від типу тканини. Таким чином можна дуже точно відрізнити хвору тканину від здорової.

Цікаво, що МРТ стало мож­ливим завдяки двом фун­даментальним відкриттям – ядерний магнітний резонанс (який дав ідею) і над­провідність (яка лежить в основі сильних магнітів, що використовуються в МРТ).

Таким чином, МРТ – чудовий приклад як фантастичний медичний прилад з’явився з фундаментальних наукових досліджень.

Матеріал виходить за підтримки EPS Kharkiv Young Minds Section

Джерело фото